INDIAN SCHOOL MUSCAT
 HALF YEARLY EXAMINATION 2023
 MATHEMATICS - 041

CLASS:X
Max.Marks: 80

MARKING SCHEME			
SET	QN.NO	VALUE POINTS	MARKS SPLIT UP
	1	(b) -1	
	2	(b) 6	
	3	(a) 3:1	
	4	(b) 2	
	5	(d) $\frac{1}{7}$	
	6	(b) 25	
	7	(c) 5	
	8	(c) 8 cm	
	9	(c) 2×7^{2}	
	10	(c) 20	
	11	(a) 1.5	
	12	(b) 10 cm	
	13	(a) $+3 \sqrt{3},-3 \sqrt{3}$	
	14	(b) 50°	
	15	(c) $\frac{12}{13}$	

16	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).	
17	(b) 5 units	
18	(d) Assertion (A) is false but reason(R) is true.	
19	(d) SSS similarity criterion	
20	(a) 240	
21	$\begin{aligned} & \mathrm{HCF}=5 \\ & \mathrm{LCM}=300 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$
22	$\begin{array}{\|l} \mathrm{S}=(3+\sqrt{ } 2)+(3-\sqrt{2})=6 \\ \mathrm{P}=(3+\sqrt{2}) \mathrm{x}(3-\sqrt{2})=(3)^{2}-(\sqrt{ } 2)^{2}=9-2=7 \\ \text { Quadratic polynomial }=\mathrm{x}^{2}-\mathrm{Sx}+\mathrm{P}=\mathrm{x}^{2}-6 \mathrm{x}+7 \end{array}$	$\begin{array}{\|l\|} \hline 1 / 2 \\ 1 / 2 \\ 1 \\ \hline \end{array}$
23	$\begin{aligned} & A B=10 \text { units } \ldots \text { [Given } \\ & A B^{2}=10^{2}=100 \ldots \text { [Squaring both sides } \\ & (11-3)^{2}+(y+1)^{2}=100 \\ & 8^{2}+(y+1)^{2}=100 \\ & (y+1)^{2}=100-64=36 \\ & y+1= \pm 6 \ldots[\text { Taking square-root on both sides } \\ & y=-1 \pm 6 \therefore y=-7 \text { or } 5 \\ & \text { OR } \\ & \text { Area of } \triangle \mathrm{ABC}=\frac{1}{2} \times \text { base } \times \text { corr, altitude } \\ & =\frac{1}{2} \times 5 \times 3=7.5 \text { sq.units } \end{aligned}$	1 1 1 1
24	$a=2, b=-4, c=3$ $b^{2}-4 a c=-8<0$ No real root \quad OR Roots are $\frac{2}{3}$ and $-\frac{1}{2}$	$\begin{array}{\|l\|} \hline 1 / 2 \\ 1 \\ 1 / 2 \\ \hline 1+1 \\ \hline \end{array}$
25	$\begin{aligned} & \text { Table } \\ & \text { Median }=340 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$
26	$\begin{aligned} & \text { Let the large number be } x . \\ & \text { Square of the larger number }=x^{2} \\ & \text { Square of the srnall number }=8 x+8 \\ & x^{2}-8 x-8=145 \\ & \Rightarrow x=-9 \text { (or) } x=17 \\ & \text { Larger no }=17 \\ & \text { Square of small no }=144 \\ & \text { Small no }=12 \\ & \text { The numbers are } 17 \text { and } 12 \\ & \hline \end{aligned}$	1 1 1

\begin{tabular}{|c|c|c|c|}
\hline \& 27 \& \begin{tabular}{l}
The total surface area of the solid =Total surface area of the cube+Curved surface area of the hemisphere-Area of the base of the hemisphere.
\[
=6 a^{2}+2 \pi r^{2}-\pi r^{2}
\]
\[
=\left[6 \times 10^{2}+2 \times 3.14 \times 5^{2}-3.14 \times 5^{2}\right] \mathrm{cm}^{2}
\]
\[
=600+157-78.5=678.5 \mathrm{~cm}^{2}
\] \\
Cost of painting=Rs. 5 per \(100 \mathrm{~cm}^{2}\) \\
\(\therefore\) Cost of painting the solid \(=678.5 \times \frac{5}{100}=\) Rs. 33.90 \\
Hence, the approximate cost of painting the solid so formed is Rs.33.90
\end{tabular} \& \(1 / 2\)

$11 / 2$

\hline \& 28 \& | (i) $1 / 5$ | (ii) $3 / 20$
 OR | (iii) $1 / 10$ |
| :--- | :---: | :--- |
| | (i) $1 / 4$ | (ii) $1 / 18$ | (iii) $1 / 6$ \& $1+1+1$

\hline \& 29 \& Volume of cone Volume of cylinder Volume of hemisphere Total volume Conclusion \& $$
\begin{aligned}
& \hline 1 / 2 \\
& 1 / 2 \\
& 1 / 2 \\
& 1 \\
& 1 / 2 \\
& \hline
\end{aligned}
$$

\hline \& 30 \& | We have, $6 \mathrm{x}^{2}-3-7 \mathrm{x}$ $\begin{aligned} & =6 x^{2}-7 x-3 \\ & =(2 x-3)(3 x+1) \end{aligned}$ |
| :--- |
| Zeroes are: $2 \mathrm{x}-3=0 \text { or } 3 \mathrm{x}+1=0$ |
| Therefore $x=3 / 2$ or $x=-1 / 3$ |
| Verification: |
| Here $\mathrm{a}=6, \mathrm{~b}=-7, \mathrm{c}=-3$ |
| Sum of the zeroes. $(\alpha+\beta)=3 / 2+(-1 / 3)=(9-2) / 6=7 / 6$ |
| $7 / 6=-($ coefficient of $x) /\left(\right.$ Coefficient of $\left.x^{2}\right)=-b / a$ |
| Product of Zeroes $(\alpha \times \beta)=3 / 2 \times(-1 / 3)=-3 / 6$ |
| $-3 / 6=$ Constant term $/$ Coefficient of $x^{2}=c / a$ |
| Therefore, Relationship holds | \& 1

1

1

\hline
\end{tabular}

31	Given: ABCD is parallelogram circumscribing a circle. To prove: ABCD is a rhombus Proof: We have, $\begin{equation*} \mathrm{DR}=\mathrm{DS} \tag{i} \end{equation*}$ [Lengths of tangents drawn from an external point to a circle are equal] Also, $\begin{align*} \mathrm{AP} & =\mathrm{AS} \tag{ii}\\ \mathrm{BP} & =\mathrm{BQ} \tag{iii}\\ \mathrm{CR} & =\mathrm{CQ} \tag{iv} \end{align*}$ Adding (i), (ii), (iii) and (iv), $\left.\begin{array}{rlrl} & & (\mathrm{DR}+\mathrm{CR})+(\mathrm{AP}+\mathrm{BP}) & =(\mathrm{DS}+\mathrm{AS})+(\mathrm{BQ}+\mathrm{CQ}) \\ \Rightarrow & & & \\ \Rightarrow & & & \mathrm{AB}+\mathrm{AB} \end{array}\right)=2 \mathrm{AD}+\mathrm{BC} \quad[\because \text { In parallelogram, opposite sides are equal }$ Hence, ABCD is a rhombus as all sides are equal in rhombus. OR Given: A quadrilateral ABCD which circumscribes a circle. Let it touches the circle at $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S as shown in figure. To Prove: $\mathrm{AB}+\mathrm{CD}=\mathrm{AD}+\mathrm{BC}$ Proof: We know that the lengths of the tangents drawn from a point outside the circle to the circle are equal. $\begin{align*} & \therefore \mathrm{AP}=\mathrm{AS} ; \mathrm{BP}=\mathrm{BQ} ; \mathrm{CQ}=\mathrm{CR} \text { and } \mathrm{DR}=\mathrm{DS} \tag{i}\\ & \begin{aligned} \text { Consider, } \mathrm{AB}+\mathrm{CD} & =\mathrm{AP}+\mathrm{PB}+\mathrm{CR}+\mathrm{RD} \\ & =\mathrm{AS}+\mathrm{BQ}+\mathrm{CQ}+\mathrm{DS} \\ & =(\mathrm{AS}+\mathrm{DS})+(\mathrm{BQ}+\mathrm{CQ})=\mathrm{AD}+\mathrm{BC} \end{aligned} \\ & \end{align*}$	$1 / 2$ Fig $1 / 2$ $1 / 2$ 1 1
32	Proof $1^{\text {st }}$ part Proof 2 ${ }^{\text {nd }}$ part	$\begin{array}{\|l\|} \hline 3 \\ 2 \end{array}$
33	Statement Proof $\begin{aligned} & \frac{A D}{D B}=\frac{A E}{E C} \\ & \frac{x}{x+1}=\frac{x+3}{x+5} \end{aligned}$ Simplification $x=3$	$\begin{aligned} & 1 \\ & 2 \\ & 1 / 2 \\ & \\ & 1 / 2 \\ & \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
34		$11 / 2$ $11 / 2$ is 1

