INDIAN SCHOOL MUSCAT HALF YEARLY EXAMINATION 2023

SET A

MATHEMATICS - 041

CLASS:X Max.Marks: 80

	MARKING SCHEME				
SET	QN.NO	VALUE POINTS	MARKS SPLIT UP		
	1	(b) -1			
	2	(b) 6			
	3	(a) 3: 1			
	4	(b) 2			
	5	$(d)\frac{1}{7}$			
	6	(b) 25			
	7	(c) 5			
	8	(c) 8 cm			
	9	(c) 2×7^2			
	10	(c) 20			
	11	(a) 1.5			
	12	(b) 10 cm			
	13	(a) $+3\sqrt{3}$, $-3\sqrt{3}$			
	14	(b) 50°			
	15	$(c)\frac{12}{13}$			

16	16 (a) Both assertion (A) and reason (R) are true and reason (R) is the correct			
	explanation of assertion (A).			
	explanation of assertion (11).			
17	(b) 5 units			
18	(d) Assertion (A) is false but reason(R) is true.			
19	19 (d) SSS similarity criterion			
20	(a) 240			
21	21 HCF = 5			
	LCM = 300			
22	$S = (3 + \sqrt{2}) + (3 - \sqrt{2}) = 6$	1/2		
	$P = (3 + \sqrt{2}) \times (3 - \sqrt{2}) = (3)^2 - (\sqrt{2})^2 = 9 - 2 = 7$	1/2		
	Quadratic polynomial = $x^2 - Sx + P = x^2 - 6x + 7$	1		
23	AB = 10 units [Given			
	$AB^2 = 10^2 = 100 \dots$ [Squaring both sides	1		
	$(11-3)^2 + (y+1)^2 = 100$			
	$8^2 + (y+1)^2 = 100$			
	$(y+1)^2 = 100 - 64 = 36$			
	$y + 1 = \pm 6$ [Taking square-root on both sides	1		
	$y = -1 \pm 6 : y = -7 \text{ or } 5$			
	OR			
	OR Area of $\triangle ABC = \frac{1}{2} \times base \times corr$, altitude			
	$=\frac{1}{2}\times 5\times 3=7.5$ sq.units	1		
	$-\frac{1}{2}$ \times 3 \times 3 = 7.3 sq.units	1		
		1/		
24	a = 2, b = -4, c = 3	1/2		
	$b^2 - 4ac = -8 < 0$	1 1/2		
	No real root	72		
	OR			
	Roots are $\frac{2}{3}$ and $-\frac{1}{2}$	1+1		
25	Table	1		
	Median = 340	1		
26	Let the large number be x.			
	Square of the larger number = x^2	1		
	Square of the srnall number = $8x+8$			
	$x^2 - 8x - 8 = 145$			
	$\Rightarrow x = -9 \text{ (or) } x = 17$			
	Larger no = 17			
	Square of small no=144			
	Small no=12 The numbers are 17 and 12			
	The numbers are 17 and 12	1		

27	The total surface area of the solid =Total surface area of the cube+Curved surface area of the hemisphere-Area of the base of the hemisphere.	1/2	
	$= 6a^2 + 2\pi r^2 - \pi r^2$		
	$= [6 \times 10^2 + 2 \times 3.14 \times 5^2 - 3.14 \times 5^2] \text{ cm}^2$		
	$= 600 + 157 - 78.5 = 678.5 \text{cm}^2$		
	Cost of painting=Rs.5 per 100cm ²		
	∴ Cost of painting the solid= $678.5 \times \frac{5}{100}$ =Rs.33.90	2	
	Hence, the approximate cost of painting the solid so formed is Rs.33.90	1/2	
28	(i)1/5 (ii)3/20 (iii)1/10 OR	1+1+1	
29	(i)1/4 (ii)1/18 (iii)1/6 Volume of cone	1/2	
29	Volume of colle Volume of cylinder	1/2	
	Volume of hemisphere	1/2	
	Total volume	1	
	Conclusion	1/2	
30	We have, $6x^2 - 3 - 7x$		
	$=6x^2-7x-3$		
	=(2x-3)(3x+1)		
	Zeroes are:		
	2x - 3 = 0 or $3x + 1 = 0$	1	
	Therefore $x = 3/2$ or $x = -1/3$	1	
	Verification: Here $a = 6$, $b = -7$, $c = -3$		
	Sum of the zeroes $\alpha (\alpha + \beta) = 3/2 + (-1/3) = (9 - 2)/6 = 7/6$		
	$7/6 = -(\text{coefficient of } x)/(\text{Coefficient of } x^2) = -b/a$		
	Product of Zeroes $(\alpha \times \beta) = 3/2 \times (-1/3) = -3/6$		
	$-3/6$ = Constant term / Coefficient of $x^2 = c/a$		
	Therefore, Relationship holds		

31	Given: ABCD is parallelogram circumscribing a	circle.	Fig ½
	To prove: ABCD is a rhombus	1/2	
	Proof: We have, $DR = DS$		
	[Lengths of tangents drawn:		
	Also, $AP = AS$		
	BP = BQ		
	CR = CQ	1	
	Adding (i) , (ii) , (iii) and (iv) ,		
	(DR + CR) + (AP + BP) = (DS + AS)	1/2	
	$\Rightarrow \qquad CD + AB = AD + BC$, -	
	$\Rightarrow \qquad 2AB = 2AD [:]$		
	\Rightarrow AB = AD		
	$\therefore \qquad \qquad AB = AD = BC$	= CD	
	Hence, ABCD is a rhombus as all sides are equa		1/2
	OR		
	Given: A quadrilateral ABCD which circumscribe		
	Let it touches the circle at P, Q, R and S as shown		
	To Prove: $AB + CD = AD + BC$	· /	Fig ½
	Proof: We know that the lengths of the tangents	drawn from a point \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1/2
	outside the circle to the circle are equal.		
	\therefore AP = AS; BP = BQ; CQ = CR and DR =	1	
	Consider, $AB + CD = AP + PB + CR + RD$		
	= AS + BQ + CQ + DS $= (AS + DS) + (BQ + CQ)$	1	
32	Proof 1st part	3	
32	Proof 2 nd part	$\begin{bmatrix} 3 \\ 2 \end{bmatrix}$	
33	Statement	1	
33	Proof		$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
	AD AE	1/2	
	$\frac{1}{DB} = \frac{1}{EC}$		/2
	$\begin{array}{ccc} DB & EC \\ x & x+3 \end{array}$	1/2	
	=	/2	
	x+1 $x+5$		1/2
	Simplification	1/2	
34	x=3	WAR 20 12 12 12	, -
34	Volume of cone is,	Volume of cylinder is,	
	$=\frac{1}{3}\pi r^2 h$	$=\pi r^2 h$	11/2
	3	1775 BT 1775	1,2
		$= \pi \times 60^2 \times 180$	
	$=\frac{1}{3}\pi\times660^2\times120$	$= 648000\pi \text{cm}^3$	
		- 048000/telli	11/2
	$= 14000\pi \text{cm}^3$		
	Values of land	Volume of water left in cylinder	is
	Volume of hemisphere is,		
	$=\frac{4}{3}\pi r^3 h$	$=\pi r^2 h - \frac{1}{3}\pi r^2 h - \frac{4}{3}\pi r^3 h$	
	3	3 3	1
	2	$= (648000 - 288000)\pi$	
	$=\frac{2}{3}\pi 60^3 h$	$= 360000\pi$	
	$= 144000\pi \text{cm}^3$	$= 1130400 \text{cm}^3$	

Radius of the conical part, $r = \frac{5}{2}$ cm. 1 Height of the conical part, h = 6 cm. Radius of the cylindrical part, $R = \frac{3}{2}$ cm. Height of cylindrical part, H = (26 - 6) cm 26 cm = 20 cm.Slant height of the conical part, $l = \sqrt{r^2 + h^2} = \sqrt{\left(\frac{5}{2}\right)^2 + 6^2}$ cm 1 $=\sqrt{\frac{25}{4}+36}$ cm $=\sqrt{\frac{169}{4}}$ cm $=\frac{13}{2}$ cm. Area to be painted orange = curved surface area of the cone + base area of the cone - base area of the cylinder 1 $=\pi rl + \pi r^2 - \pi R^2 = \pi (rl + r^2 - R^2)$ $= \left[3.14 \times \left(\frac{5}{2} \times \frac{13}{2} + \frac{5}{2} \times \frac{5}{2} - \frac{3}{2} \times \frac{3}{2} \right) \right] \text{ cm}^2$ $= \left[3.14 \times \left(\frac{65}{4} + \frac{25}{4} - \frac{9}{4} \right) \right] \text{ cm}^2 = \left(3.14 \times \frac{81}{4} \right) \text{ cm}^2$ 1 $= (3.14 \times 20.25) \text{ cm}^2 = 63.585 \text{ cm}^2.$ Area to be painted yellow = curved surface area of the cylinder + base area of the cylinder $= 2\pi RH + \pi R^2 = \pi R(2H + R)$ = $\left[3.14 \times \frac{3}{2} \times \left(2 \times 20 + \frac{3}{2}\right)\right] \text{ cm}^2$ $=\left(3.14\times\frac{3}{2}\times\frac{83}{2}\right)$ cm² $=\left(\frac{781.86}{4}\right)$ cm² $= 195.465 \text{ cm}^2$ 1 35 $u_i = \frac{x_i - 50}{20}$ Class interval Frequency (f_i) Mid-values (x_i) $f_i u_i$ 0 - 2010 17 -2 -3420 - 4030 -1 f_1 $-f_1$ 40-60 32 0 50 0 60 - 8070 1 f_2 f_2 80-100 19 2 38

 $f_1 + f_2 = 52$ ----(i) Mean = 50

Total

2

 $\Sigma f_i u_i = 4 - f_1 + f_2$

 $\Sigma f_i = 68 + f_1 + f_2$

				1	
	Therefore, $f_1 - f_2 = 4$ (ii)				1
	Solving we get $f_1 = 28$ and $f_2 = 24$				1
OR					
	Index No. of weeks (f.) c.f.				
	1500-1600	3	3		
	1600-1700	$11 f_0$	14		
	1700-1800	$\frac{12 f_1}{f_1}$	26		2
	1800-1900	$7f_2$	33		2
	1900-2000	92	42		
	2000-2100	8	50		
	2100-2200	2	52		
		$\Sigma f_i = 52$			
	$n = 52, \frac{n}{2} = \frac{52}{2}$	= 26			
	∴ Median class is				11/2
	1	$\frac{n}{2}-c.f.$			
	$\therefore \text{Median} = l + \frac{\frac{n}{2} - c.f.}{f} \times h$				
	$= 1700 + \left(\frac{12}{12} \times 100\right) = 1800$				
	Maximum frequency is 12				
	⇒ Modal class is 1700–1800				11/2
	Mode = $l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$				
	$= 1700 + \frac{12 - 11}{24 - 11 - 7} \times 100$				
= $1716.\overline{6}$ or 1716.67 (approx.)					
36	(i)distance = (speed)x time			1	
	(ii) $x^2 + 30x - 400 = 0$				1
	(iii)10 km/hour				2
	OR				
	(iii)1.5 hour			_	
37	(i)50m				1
	(ii)30m			$\frac{1}{2}$	
	(iii) 24m				2
	OR				
38	(iii)36m				1
30	(i)3 units				1
	(ii)(4,2) (iii)Ramesh travels more				2
	OR			_	
	(iii) Library				
	() =				